
Lightning Network Part I
scritto da Alberto De Luigi | 26 Maggio 2016
Go to part II >

Blockchain data size is expanding too much and too fast

To reach the same volume of Visa transactions, the Bitcoin
network would require 50 terabyte per year. In this regime
there is no possibility for bitcoin to substitute fiat money.

Each single user (full node) should download too many data,
unless it trusts some “authorities” which download the entire
blockchain, intermediating and guaranteeing the information
about which outputs are already spent.

The loss of indipendency of the user and the centralitazion of
the system contradict the ideological premises the Bitcoin
system is based on, and obliterate the main benefits compared
to other money systems.

The lightning network is an «extension» of the
Payment Channel
BitcoinJ software implemented the «Payment channel»: a secure
system of «off chain» transactions (not broadcasted to the
blockchain) which can reduce the size of data loaded on the
blockchain and the costs (miners’ commissions).

The «Payment channel» is a channel between two users who needs
to make recurrent payment between each other (like the bill
payer and the phone company). Only a final transaction will be
loaded on the blockchain at the end of the relationship (after
n. payments). It’s a valid tool for the stipulation of
contracts.

The system is already working but does not solve the problem

https://www.albertodeluigi.com/index/bitcoin/lightning-network-english/
http://www.albertodeluigi.com/index/bitcoin/lightning-network-part-ii/

of scalability. A valid extension of this system is the
Lightning Network.

How Payment Channel Works:
that is, how Bob and Alice can trade goods and services in
exchange of bitcoin in a secure way, without to broadcast each
transaction on the blockchain

The multisignature «funding» transaction
Suppose Alice has 10 bitcoin and she and Bob are willing to
create a channel payment.

Alice create a multisignature transaction we call F (funding
transaction), which transfer 10 bitcoin from Alice wallet as
input into an «address» as output that is conrolled by both
Alice and Bob.

From a technical point of view, the signature script moving
the bitcoin from F presents two public key hash, one
corresponding to the pair of keys public/private of Bob, the
other Alice’s pair of public/private

If F would be broadcasted to the blockchain, neither Bob nor
Alice could independently move the bitcoin transferred in F as
a new input for another transaction, since both private keys
are necessary to move that output. For this reason, Alice does
not sign the transaction to send her own bitcoin in F before
Bob guarantees he won’t «blackmail» her keeping the money
locked in F.

Since by hypothesis both Alice and Bob are willing to create
the channel payment, Bob gives her this guarantee. In fact a
new transaction is created, called R, where R means Redeem or
Refund transaction (the transaction allowing Alice to redeem
her funds). R uses 10 bitcoin present in F as input e and
sends them back to Alice’s wallet.

It’s possible to transfer the 10 bitcoin in F even if F is not
already broadcasted to the blockchain. In fact, to create the
transaction R connected to F, it’s enough to know the hash of
F, broadcasted to Bob without let him know other details about
F. Bob signs the signature script which is constituted by the
public key hash of R communicated by Alice, signing with the
private key associated to an unspent output: normally, this
output is in the blockchain, in the case of F it is located in
the server where F is registered

The guarantee: a «refund» transaction
Thus Bob signs the signature script of the transaction R with
the private key he owns unlocking the output of F to be used
as input for R. Bob broadcasts R to Alice.

Alice owns the other private key for F, then she can sign at
any time the funds transfer and can broadcast it on the
blockchain, sending back the 10 bitcoin to her wallet.

Only after Bob signs R and broadcast it to Alice, she will
sign F. In fact now Alice can move back to her wallet the
output of F into R at any time. In this moment both Alice and
Bob can broadcast F on the blockchain, but it is not
necessary.

A “fund” (the multisignature F) has been created and it works
as «base» for the channel payment transactions. In fact, all
the payments in the channel use the bitcoin present in F.

The time constraint nLocktime
Alice can broadcast the transaction R at any time, but she
will actually «hold» the output in R («hold» means she can use
it as input in another transaction) only after a certain
amount of blocks have been created.

In fact the transaction R is created specifying a parameter
that doesn’t allow Alice to use the output before a certain
date.

In the next graphic examples, if the channel is created
Monday, Alice won’t hold the bitcoin in R before Friday.

The period of time between Monday and Friday is measured by
means of the parameter nLocktime, namely the number of new
blocks created, remembering each new block is created after 10
minutes average.

The Payment Channel transactions occur within this time span
(Monday-Friday)

Note: the time constraint is only for the Refund
transaction

(only for pedants, in case skip directly to the
pictures)

In the next pictures is shown a payment channel where each
transaction (TX 1, 2 and 3) presents a nLocktime and the
relative output can be used only after a certain date
(respectively Thursday, Wednesday and Tuesday).

Actually, in the payment channel implemented in BitcoinJ, only
the Refund tx has a specified time contraint set by the
nLocktime, since the transactions TX are saved on the server,
which deletes the old transactions, replacing them with the
new one. Both Bob and Alice coudl ask at any time the server
to broadcast the last transaction and take the money, closing
the channel, but they can’t broadcast the transaction in
autonomy (otherwise they could broadcast i.e. TX1 even if TX2
already occurred).

The system is not perfect because it requires intermediation:
if the server is destroyed, Bob broadcast F, Alice can redeem
her money broadcasting R, whose copy she keeps in local on her
PC; however no TX transaction is recoverable, even if Bob has

already delivered the smartphone to Alice. She could then
«steal» the smartphone to Bob if something happens to the
intermediary BitcoinJ.

It’s more useful to think of each transaction occurring in the
channel with a time constraint as showed in the graphs. This
doesn’t require intermediation and keep us close to the idea
of Lightning Network.

Note also that the term «commitment transaction» is taken from
Lightning Network terminology.

http://www.albertodeluigi.com/wp-content/uploads/2016/05/1.jpg

http://www.albertodeluigi.com/wp-content/uploads/2016/05/2.jpg
http://www.albertodeluigi.com/wp-content/uploads/2016/05/re1.png

Payment channel vs. Lightning Network

In the Payment channel the channel can be opened only1.
between two users with continuous relationship, thus for
each couple of users it is necessary to broadcast to the
blockchain at least 1 transaction
The channel can’t last beyond the prearranged date2.
(number of blocks created) fixed by the Refund
transaction. It is thus necessary to create a new
channel each time, increasing blockchain size
It is necessary the intermediation of BitcoinJ (or other3.
intermediaries), since TX 1, 2 and 3 have no time
constraint, contrary to what we saw in the graphs

vs

In the Lightning network the channel is open1.
indefinetly.
It is not necessary the intermediation of a BitcoinJ2.
server (or others)
The channel is «replaced» by a network of users3.
(potentially, every bitcoin user)

http://www.albertodeluigi.com/wp-content/uploads/2016/05/re2.png

Go to Part II >

http://www.albertodeluigi.com/index/bitcoin/lightning-network-part-ii/

